publications

Complete list available at Google Scholar profile.

2024

  1. Efficient six-dimensional phase space reconstructions from experimental measurements using generative machine learning
    R. Roussel, J. P. Gonzalez-Aguilera, E. Wisniewski, A. Ody, W. Liu, J. Power, Y.-K. Kim, and A. Edelen
    Phys. Rev. Accel. Beams, Sep 2024
  2. Four-dimensional phase-space reconstruction of flat and magnetized beams using neural networks and differentiable simulations
    S. Kim, J. P. Gonzalez-Aguilera, P. Piot, G. Chen, S. Doran, Y.-K. Kim, W. Liu, C. Whiteford, E. Wisniewski, A. Edelen, R. Roussel, and J. Power
    Phys. Rev. Accel. Beams, Jul 2024
  3. Detailed characterization of coherent synchrotron radiation effects using generative phase space reconstruction
    J. Gonzalez-Aguilera, Y. Kim, R. Roussel, and A. Edelen
    In Proc. IPAC’24, May 2024

2023

  1. Towards fully differentiable accelerator modeling
    J. Gonzalez-Aguilera, Y. Kim, R. Roussel, A. Edelen, and C. Mayes
    In Proc. IPAC’23, May 2023
  2. Phase Space Reconstruction from Accelerator Beam Measurements Using Neural Networks and Differentiable Simulations
    R. Roussel, A. Edelen, C. Mayes, D. Ratner, J. P. Gonzalez-Aguilera, S. Kim, E. Wisniewski, and J. Power
    Phys. Rev. Lett., Apr 2023

2022

  1. Differentiable Preisach Modeling for Characterization and Optimization of Particle Accelerator Systems with Hysteresis
    R. Roussel, A. Edelen, D. Ratner, K. Dubey, J. P. Gonzalez-Aguilera, Y.-K. Kim, and N. Kuklev
    Phys. Rev. Lett., May 2022

2021

  1. Turn-key constrained parameter space exploration for particle accelerators using Bayesian active learning
    R. Roussel, J. P. Gonzalez-Aguilera, Y.-K. Kim, E. Wisniewski, W. Liu, P. Piot, J. Power, A. Hanuka, and A. Edelen
    Nat. Commun., Sep 2021
  2. Beam Diagnostics for Multi-Objective Bayesian Optimization at the Argonne Wakefield Accelerator Facility
    J. P. Gonzalez-Aguilera, R. Roussel, Y.-K. Kim, W. Liu, J. G. Power, and E. E. Wisniewski
    In Proc. IPAC’21, Jul 2021