# Juan Pablo Gonzalez-Aguilera











### **Education**

#### PhD in Physics University of Chicago

Chicago, IL 2025 (expected)

Studying coherent synchrotron radiation in particle accelerators using high-dimensional ML-based phase space reconstruction algorithms.

### MSc in Physics University of Chicago

Chicago, IL 2022

Characterized emittance in particle accelerator using Bayesian optimization.

#### BSc in Physics (summa cum laude) Universidad de Los Andes

Bogotá, Colombia 2019

Thesis: Classification of variable stars using supervised learning.

# Research Experience

## **Graduate Research Assistant** University of Chicago and Argonne National Laboratory

Chicago, IL 2020 - present

- Characterizing coherent synchrotron radiation effects at the Argonne Wakefield Accelerator.
- Developed six-dimensional phase space reconstruction method using neural networks and differentiable physics simulations.
- Developed backward-differentiable particle tracking library in PyTorch.
- Mentored three undergraduate students in accelerator physics summer projects.
- Led accelerator group weekly meetings.

#### Post-baccalaureate Research Scholar Cornell University

Ithaca, NY 2019 - 2020

- Implemented genetic algorithms in particle accelerator multi-objective optimization.
- Assisted in design, simulations and experiments of ultra-fast electron diffraction beamline.
- Mentored an undergraduate student in experimental project.

#### Undergraduate Research Assistant Universidad de Los Andes

Bogotá, Colombia 2018 - 2019

- Implemented supervised learning methods in variable star classification.
- Characterized entangled photon source in quantum optics lab.

# **Teaching Experience**

#### **Graduate Teaching Assistant** *University of Chicago*

Chicago, IL 2020 - 2024

• Conducted discussion sessions and labs of the following courses: Mechanics, Electromagnetism, and Waves and Heat.

#### Python for Research program Mentor University of Chicago

Chicago, IL 2024

• Designed a research project for the *Python for Research* program.

## Trainee Teacher and Peer Tutor *Universidad de Los Andes*

**Bogotá, Colombia** 2018 - 2019

- Served as tutor in the Physics Department and School of Sciences. Courses: Physics I-II, Waves and Fluids, Modern Physics, Mechanics, Precalculus, Calculus I-II-III, Linear Algebra I, Probability and Statistics.
- Obtained first place in tutor evaluation ranking.

## Grader Universidad de Los Andes

Mentored and guided five students.

**Bogotá, Colombia** 2017 - 2019

 Graded the following undergraduate courses: Electromagnetism I, Mathematical Methods for Physicists, Physics I and II, Probability I.

## **Honors and Awards**

| Best Student Poster Advanced Accelerator Concepts Workshop                              | 2024 |
|-----------------------------------------------------------------------------------------|------|
| Physical Sciences Division Fellowship Physical Sciences Division, University of Chicago | 2023 |
| Robert G. Sachs Fellowship Department of Physics, University of Chicago                 | 2021 |
| SURF Cornell Research Scholarship Universidad de Los Andes and Cornell University       | 2019 |
| Summa Cum Laude degree in Physics Facultad de Ciencias, Universidad de Los Andes        | 2019 |
| Distinción de Excelencia Semestral Departmento de Física, Universidad de Los Andes      | 2018 |
| Distinción Alberto Magno Universidad de Los Andes                                       | 2014 |
| First Place (Absolute Winner) - Colombian Physics Olympiad Olimpiadas Colombianas       | 2013 |
| Honorable Mention - Iberoamerican Physics Olympiad Olimpiadas Iberoamericanas           | 2013 |
| Second Place - Colombian Sciences Olympiad Olimpiadas Colombianas                       | 2012 |

## **Talks**

Measurement of CSR-affected Beams

**Using Generative Phase Space Reconstruction** Advanced Accelerator Concepts Workshop **Detailed Characterization of Coherent Synchrotron** Gyeongju, South Korea 2024 Radiation Effects using Generative Phase Space Reconstruction 4th Machine Learning Applications for Particle Accelerators Detailed Phase Space Reconstruction from a Limited Number of San Sebastián, Spain 2023 Beam Measurements Using Neural Networks and Differentiable Simulations Physics and Applications of High Brightness Beams Chicago, IL 2022 Towards End-to-End Differentiable Accelerator Modeling 3rd Machine Learning Applications for Particle Accelerators Novel Accelerator Diagnostic Development for Multi-Objective **USA** (online) 2021 Bayesian Optimization at the Argonne Wakefield Accelerator Facility American Physical Society April Meeting **Poster Presentations** Measurement of CSR-affected Beams Chicago, IL 2024 **Using Generative Phase Space Reconstruction** 32nd Linear Accelerator Conference **Detailed Characterization of Coherent Synchrotron** Nashville, TN 2024 Radiation Effects using Generative Phase Space Reconstruction 15th International Particle Accelerator Conference

Naperville, IL 2024

Venice, Italy 2023

Brazil (online) 2021

**Towards Fully Differentiable Accelerator Modeling** 14th International Particle Accelerator Conference

Bayesian Active Learning for Autonomous New York, NY 2022

Parameter Space Exploration in Particle Accelerators

American Physical Society April Meeting

Beam Diagnostics for Multi-Objective Bayesian

Optimization at the Argonne Wakefield Accelerator Facility

12th International Particle Accelerator Conference

#### **Publications**

- Roussel, R., **Gonzalez-Aguilera, J. P.**, Wisniewski, E., Ody, A., Liu, W., Power, J., Kim, Y.-K., & Edelen, A. (2024). Efficient six-dimensional phase space reconstructions from experimental measurements using generative machine learning. *Phys. Rev. Accel. Beams*, *27*, 094601. https://doi.org/10.1103/PhysRevAccelBeams.27.094601
- Kim, S., **Gonzalez-Aguilera, J. P.**, Piot, P., Chen, G., Doran, S., Kim, Y.-K., Liu, W., Whiteford, C., Wisniewski, E., Edelen, A., Roussel, R., & Power, J. (2024). Four-dimensional phase-space reconstruction of flat and magnetized beams using neural networks and differentiable simulations. *Phys. Rev. Accel. Beams*, *27*, 074601. https://doi.org/10.1103/PhysRevAccelBeams.27.074601
- **Gonzalez-Aguilera, J.**, Kim, Y., Roussel, R., & Edelen, A. (2024). Detailed characterization of coherent synchrotron radiation effects using generative phase space reconstruction. *Proc. IPAC'24*, 2400–2403. https://www.jacow.org/ipac2024/doi/jacow-ipac2024-wepg94
- **Gonzalez-Aguilera, J.**, Kim, Y., Roussel, R., Edelen, A., & Mayes, C. (2023). Towards fully differentiable accelerator modeling. *Proc. IPAC'23*, 2797–2800. https://doi.org/10.18429/JACoW-IPAC2023-WEPA065
- Roussel, R., Edelen, A., Mayes, C., Ratner, D., **Gonzalez-Aguilera, J. P.**, Kim, S., Wisniewski, E., & Power, J. (2023). Phase space reconstruction from accelerator beam measurements using neural networks and differentiable simulations. *Phys. Rev. Lett.*, *130*, 145001. https://doi.org/10.1103/PhysRevLett.130.145001
- Roussel, R., Edelen, A., Ratner, D., Dubey, K., **Gonzalez-Aguilera, J. P.**, Kim, Y.-K., & Kuklev, N. (2022). Differentiable Preisach modeling for characterization and optimization of particle accelerator systems with hysteresis. *Phys. Rev. Lett.*, 128, 204801. https://doi.org/10.1103/PhysRevLett.128.204801

Roussel, R., **Gonzalez-Aguilera, J. P.**, Kim, Y.-K., Wisniewski, E., Liu, W., Piot, P., Power, J., Hanuka, A., & Edelen, A. (2021). Turn-key constrained parameter space exploration for particle accelerators using Bayesian active learning. *Nat. Commun.*, 12(1), 5612. https://doi.org/10.1038/s41467-021-25757-3

**Gonzalez-Aguilera, J. P.**, Roussel, R., Kim, Y.-K., Liu, W., Power, J. G., & Wisniewski, E. E. (2021). Beam diagnostics for multi-objective Bayesian optimization at the Argonne Wakefield Accelerator Facility. *Proc. IPAC'21*, 960–962. https://doi.org/10.18429/JACoW-IPAC2021-MOPAB304

## **Skills**

- **Programming Languages:** Python, PyTorch, C++, Mathematica, Fortran, Julia, Java.
- Computer Skills: Git, Linux, Bash, High-Performance Computing, Parallel Computing, GPU Acceleration, LATEX.
- Experimental Skills: Image post-processing, Electronics, Data Acquisition, Control System (EPICS), Laser Alignment, Particle Accelerator Components.
- **Soft Skills:** Leading Meetings, Teamwork, Collaboration (remote and in-person), Presentation, Communication, Adept, Receptive, Resilient, Critical Thinking, Teaching, Mentoring.

# **Areas of Expertise**

Differentiable Simulations - Accelerator Physics - Computational Physics - Experimental Physics - Data Analysis Probability - Statistics - Machine Learning - Bayesian Optimization - University Teaching - University Mentoring

## References

#### Young-Kee Kim

Louis Block Distinguished Service Professor of Physics Department of Physics and Enrico Fermi Institute University of Chicago Chicago, IL 60637

ykkim@hep.uchicago.edu

#### Auralee Edelen

Machine Learning Department Head Accelerator Research Division SLAC National Accelerator Laboratory Menlo Park, CA 94025

delen@slac.stanford.edu

## Ryan Roussel

Associate Scientist Accelerator Research Division SLAC National Accelerator Laboratory Menlo Park, CA 94025

✓ rroussel@slac.stanford.edu

#### John Power

Accelerator Physics Group Leader High Energy Physics Division Argonne National Laboratory Lemont, IL 60439

**☑** jp@anl.gov